If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+240Y+115
We move all terms to the left:
-(-16Y^2+240Y+115)=0
We get rid of parentheses
16Y^2-240Y-115=0
a = 16; b = -240; c = -115;
Δ = b2-4ac
Δ = -2402-4·16·(-115)
Δ = 64960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64960}=\sqrt{64*1015}=\sqrt{64}*\sqrt{1015}=8\sqrt{1015}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-8\sqrt{1015}}{2*16}=\frac{240-8\sqrt{1015}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+8\sqrt{1015}}{2*16}=\frac{240+8\sqrt{1015}}{32} $
| x-(-2x+8)=1 | | -9+6n=-27 | | x–5=11 | | -5(2x-15)=2(x-15)-39 | | 5x-7=35+2x | | 7x-4x=8-2x=8x | | -174=v+626 | | t^2+8t+16=45t2+8t+16=45 | | 1/2(x-2)=29+8x | | 7n-4=696 | | f/14=58 | | -1/3(2x+1)=3 | | 4+3x=2(-x+5)-21 | | s-52=15 | | h/12=49 | | b-b8=14 | | x+2x+4+6=8+x+(-2x) | | s−52=15 | | c/3-5=7 | | 7(r-84)=21 | | 5x-10=12x+18 | | x^2-39x-1260=0 | | 7x+15=74.5 | | 3x-5+10+7x=0 | | 11=m/4-9- | | 3*(z+8)=6 | | 3=(8)(1)+b | | 22=2(3x-1 | | 2h=7=-9 | | 8x-1=7x+29 | | x-39x-1260=0 | | 5yX3=28 |